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Abstract

We demonstrate a generic speech
engine that handles a broad range of
scenarios without needing to resort to
domain-specific optimizations.

We perform a focused search through
model architectures finding deep
recurrent nets with multiple layers of
2D convolution and layer-to-layer batch
normalization to perform best.

In  many cases, our system s
competitive with the transcription
performance of human workers when
benchmarked on standard datasets.

This approach also adapts easily to
multiple languages, which we illustrate
by applying essentially the same
system to both Mandarin and English
speech.

To train on 12,000 hours of speech, we
perform many systems optimizations.
Placing all computation on distributed
GPUs, we can perform synchronous
SGD at 3 TFLOP/s per GPU for up to a
128 GPUs (weak scaling).

For deployment, we develop a batching
scheduler to improve computational
efficiency while minimizing latency.

We also create specialized matrix
multiplication kernels to perform well
at small batch sizes.

Combined with forward only variants of
our research models, we achieve a
low-latency production system with
little loss in recognition accuracy.
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Architectural Improvements Generalize to Mandarin ASR
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Unaccented Mandarin spontaneous 5000 English 5-layers, 1 recurrent 27.79 14.39 5-layers, 1 recurrent 713 1541
Accented Mandarin spontaneous 3000 English 9-layers, 7 recurrent 14.93 9.52 5-layers, 3 recurrent 6.49 11.85
Assorted Mandarin mixed 1400 Mandarin  5-layers, 1 recurrent 9.80 7.13 5-layers, 3 recurrent + BN 6.22 9.39
Total 9400 Mandarin 9-layers, 7 recurrent 7.55 5.81 O-layers, 7 recurrent + BN + 2D conv ~ 5.81 7.93
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Mix of conversational, read, and spontaneous.
Average utterance length ~3 seconds.
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Internal Mandarin voice search test set.
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Scaling Neural Network Training Row Convolutions
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Language CPUCTCTime GPUCTCTime Speedup
English 5888.12 203.56 28.9
Mandarin 1688.01 135.05 12.5

An optimized CTC implmentation on the GPU is significantly
faster than the corresponding CPU implementation. This also
eliminates all roundtrip copies beween CPU and GPU. All times
are in seconds for training one epoch of a 5 layer, 3 bi-directional
layer network.




