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We demonstrate a generic speech 
engine that handles a broad range of 
scenarios without needing to resort to 
domain-speci�c optimizations.

We perform a focused search through 
model architectures �nding deep 
recurrent nets with multiple layers of 
2D convolution and layer-to-layer batch 
normalization to perform best.

In many cases, our system is 
competitive with the transcription 
performance of human workers when 
benchmarked on standard datasets. 

This approach also adapts easily to 
multiple languages, which we illustrate 
by applying essentially the same 
system to both Mandarin and English 
speech.

To train on 12,000 hours of speech, we 
perform many systems optimizations. 
Placing all computation on distributed 
GPUs, we can perform synchronous 
SGD at 3 TFLOP/s per GPU for up to a 
128 GPUs (weak scaling). 

For deployment, we develop a batching 
scheduler to improve computational 
e�ciency while minimizing latency. 
We also create specialized matrix 
multiplication kernels to perform well 
at small batch sizes.

Combined with forward only variants of 
our research models, we  achieve a 
low-latency production system with  
little loss in recognition accuracy.
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Architectural Improvements Generalize to Mandarin ASR

More layers of 2D convolution 
generalize better in noisy 
environments, while more layers 
of 1D convolution lead to worse 
generalization.

Temporal Stride:   2
Frequency Stride: 2/layer
7-Recurrent Layers (38M Params)

Batch normalization (between layers, not be-
tween timesteps) improves both training and 
generalization in deep recurrent networks.

More layers of recurrence helps 
for both Gated Recurrent Units 
(GRUs) and Simple Recurrent 
Units. Increase at 7xGRU is likely 
due to not enough parameters 
(layers too thin).

1x1D Convolution Layer
(38M Params)

WER decreases following an 
approximate power law with 
amount of training audio 
(~40% relative / decade).  There 
is a near constant  relative o�set 
between noisy and clean 
generalization (~60%).

2x2D Convolution
Temporal Stride:   2
Frequency Stride: 2/layer
7-Recurrent Layers (70M Params)

Millions of Parameters

GRU:
1x2D Convolution
Temporal Stride:   3
Frequency Stride: 2
3-Recurrent Layers
Bigrams

Simple Recurrent:
3x2D Convolution
Temporal Stride:   3
Frequency Stride: 2/layer
7-Recurrent Layers
Bigrams

Connectionist Temporal 
Classi�cation (CTC)

Spectrogram

Fully 
Connected

1x1D Convolution
7-Recurrent Layers (38M Params)

3x2D Convolution (Bigrams / BN)
Temporal Stride:   3
Frequency Stride: 2/layer
7-Recurrent Layers (100M Params)
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Diverse Datasets
Dataset Speech Type Hours

WSJ
Switchboard
Fisher
LibriSpeech
Baidu

read
conversational
conversational
read
read

80
300

2000
960

5000
3600Baidu mixed

11940Total

Dataset Type Hours

Unaccented Mandarin
Accented Mandarin
Assorted Mandarin

spontaneous
spontaneous
mixed

5000
3000
1400

9400Total

Test set DS1 Human

WSJ eval’92
WSJ eval’93
LibriSpeech test-clean
LibriSpeech test-other

5.03
8.08
5.83

12.69

Read Speech

DS2
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5.33

13.25
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VoxForge American-Canadian
VoxForge Commonwealth
VoxForge European
VoxForge Indian

4.85
8.15

12.76
22.15

Accented Speech

DS2

7.55
13.56
17.55
22.44

15.01
28.46
31.20
45.35

Test set DS1 Human

CHiME eval clean
CHiME eval real
CHiME eval sim

3.46
11.84
31.33

Noisy Speech

DS2

3.34
21.79
45.05

6.30
67.94
80.27

Language Architecture Dev No LM

English
English
Mandarin

5-layers, 1 recurrent
9-layers, 7 recurrent

27.79
14.93

9.80
7.55Mandarin

Dev LM

5-layers, 1 recurrent
9-layers, 7 recurrent

14.39
9.52
7.13
5.81

Architecture Dev

5-layers, 1 recurrent
5-layers, 3 recurrent

7.13
6.49
6.22
5.81

Test

5-layers, 3 recurrent + BN
9-layers, 7 recurrent + BN + 2D conv

15.41
11.85

9.39
7.93

3x2D Convolution
Temporal Stride:   4
Frequency Stride: 2/layer
70M Params

Inspired by Mandarin, we 
can maintain performance 
while reducing the number 
of timesteps (thus dramatically reducing computation) 
by creating a larger alphabet (bigrams) with fewer char-
acters / second. This decreases the entropy density of 
the language, allowing for more temporal compression. 
(ex. [the_cats_sat] -> [th, e, _, ca, ts, _, sa, t])

4.1

Unigram Mandarin
Chars / Sec
Bits / Char

2.4
9.6

14.1

Bits / Sec

Bigram 
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“A Sort of Stochastic Gradient Descent”
Curriculum learning with utterance length 
as a proxy for di�culty. Sorting the �rst 
epoch by length improves convergence 
stability and �nal values. 

Mix of conversational, read, and spontaneous. 
Average utterance length ~6 seconds. 

WER

WER

WER WER

WER

CERWER English / CER MandarinMix of conversational, read, and spontaneous. 
Average utterance length ~3 seconds. 

Hannun et al.,   Deep speech:  
Scaling up end-to-end speech 

recognition, 2014.
http://arxiv.org/abs/1412.5567

Amazon mechanical turk transcription. 
Each utterance was transcribed by 2 turk-
ers, averaging 30 seconds of work time per 
an utterance. 
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Optimized compute dense node with 53 TFLOP/s peak compute and large 
PCI root complex for e�cient communication

An optimized CTC implmentation on the GPU is signi�cantly 
faster than the corresponding CPU implementation. This also 
eliminates all roundtrip copies beween CPU and GPU. All times 
are in seconds for training one epoch of a 5 layer, 3 bi-directional 
layer network.

We built a system to train deep recurrent 
neural networks that can linearly scale 
from 1 to 128 GPUs, while sustaining 3 
TFLOP/s computational throughput per 
GPU throughout an entire training run 
(weak scaling). We did this by carefully de-
signing our node, building an e�cient com-
munication layer and writing a very fast 
implementation of CTC cost function so 
that our entire network runs on the GPU.

Node Architecture

Scaling Neural Network Training

Computing CTC on GPU

Fast MPI AllReduce
We use synchronous SGD for 
deterministic results from 
run to run. The weights are 
synchronized through MPI 
Allreduce. We wrote our own 
Allreduce  implementation 
that is 20x faster than Open-
MPI’s Allreduce up to 16 
GPUs. It can scale up to 128 
GPUs and maintain its supe-
rior performance

ht

Row convolution 
layer

Recurrent layer

Row Convolutions

A special convolution layer that captures a forward context of �xed 
number of timesteps into the future. This allows us to train and 
deploy a model with only forward recurrent layers. Models with 
only forward recurrent layers satisfy the latency constraints for de-
ployment since we do not need to wait for the end of utterance.

As we see on the right, 
the production system 
that only has forward 
recurrent layers is very 
close in performance to 
the research system with bi-directional layers, on two di�erent 
test sets.

We wrote a speical ma-
trix-matrix multiply kernel 
that is e�cient for half-preci-
sion and small batch sizes. 
The deployment system 
uses small batches to mini-
mize latency and uses 
half-precision to minimize 
memory footprint. Our 
kernel is 2x faster than the 
publicly available kernels 
from Nervana systems

Deployment Optimized Matrix-Matrix 
Multiply

Batch Dispatch
10 streams
20 streams
30 streams

We built a batching schedul-
er that assembles streams of 
data from user requests into 
batches before doing for-
ward propagation. Large 
batch size results in more 
computational e�ciency 
but also higher latency. As 
expected, batching works 
best when the server is 
heavily loaded: as load 
increases, the distribution 
shifts to favor processing 

requests in larger batches. Even for  a light load of only 10 concurrent user 
requests, our system performs more than half the work in batches with at least 
2 samples.
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Language CPU CTC Time

English
Mandarin
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GPU CTC Time Speedup
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Internal Mandarin voice search test set.


