Bai

Deep Speech 2: End-to-End Speech Recognition in English and Mandarin Silicon Valley AI Lab (SVAIL)*

Abstract

We demonstrate a generic speech engine that handles a broad range of scenarios without needing to resort to domain-specific optimizations.

We perform a focused search through architectures finding model deep recurrent nets with multiple layers of 2D convolution and layer-to-layer batch normalization to perform best.

system many cases, our IS the transcription competitive with performance of human workers when benchmarked on standard datasets.

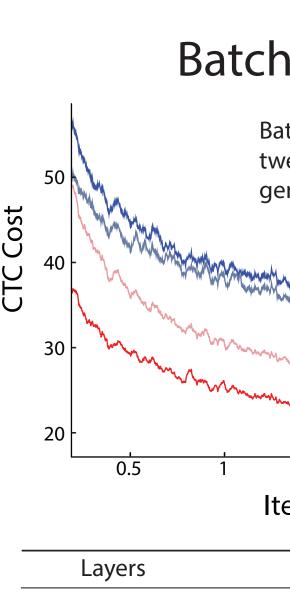
This approach also adapts easily to multiple languages, which we illustrate by applying essentially the same system to both Mandarin and English speech.

To train on 12,000 hours of speech, we perform many systems optimizations. Placing all computation on distributed GPUs, we can perform synchronous SGD at 3 TFLOP/s per GPU for up to a 128 GPUs (weak scaling).

For deployment, we develop a batching scheduler to improve computational efficiency while minimizing latency. We also create specialized matrix multiplication kernels to perform well at small batch sizes.

Combined with forward only variants of our research models, we achieve a low-latency production system with little loss in recognition accuracy.

Architecture Search / Data Collection



Layers	Ti	rain	D	Dev			
(Recurrent/Total)	Width	No BN	BN	No BN	BN		
1/5	2400	10.55	11.99	13.55	14.40		
3/5	1880	9.55	8.29	11.61	10.56		
5/7	1510	8.59	7.61	10.77	9.78		
7/9	1280	8.76	7.68	10.83	9.52		
WEF							

SortaGrad

	Baseline
Not Sorted	11.96
Sorted	10.83

"A Sort of Stochastic Gradient Descent" Curriculum learning with utterance length as a proxy for difficulty. Sorting the first epoch by length improves convergence stability and final values.

Diverse Datasets

Dataset S	Speech Type	Hours			
WSJ	read	80			
Switchboard	conversational	300			
Fisher	conversational	2000			
LibriSpeech	read	960			
Baidu	read	5000			
Baidu	mixed	3600			
Total		11940			
Mix of conversational, read, and spontaneous					

Average utterance length ~6 seconds.

Test set WSJ eval'92 WSJ eval'93 LibriSpeech tes LibriSpeech tes **DS 1**

Hannun et al., Deep spee caling up end-to-end spe recognition, 2014. http://arxiv.org/abs/1412.5567

Dataset Unaccented Mandar Accented Mandarin Assorted Mandarin Total

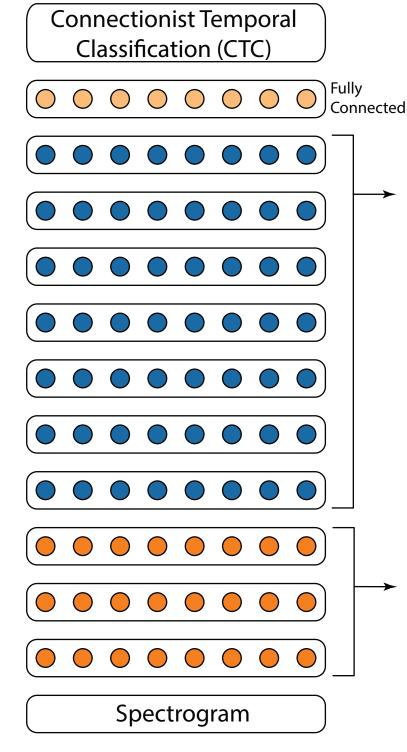
Mix of conversationa Average utterance ler

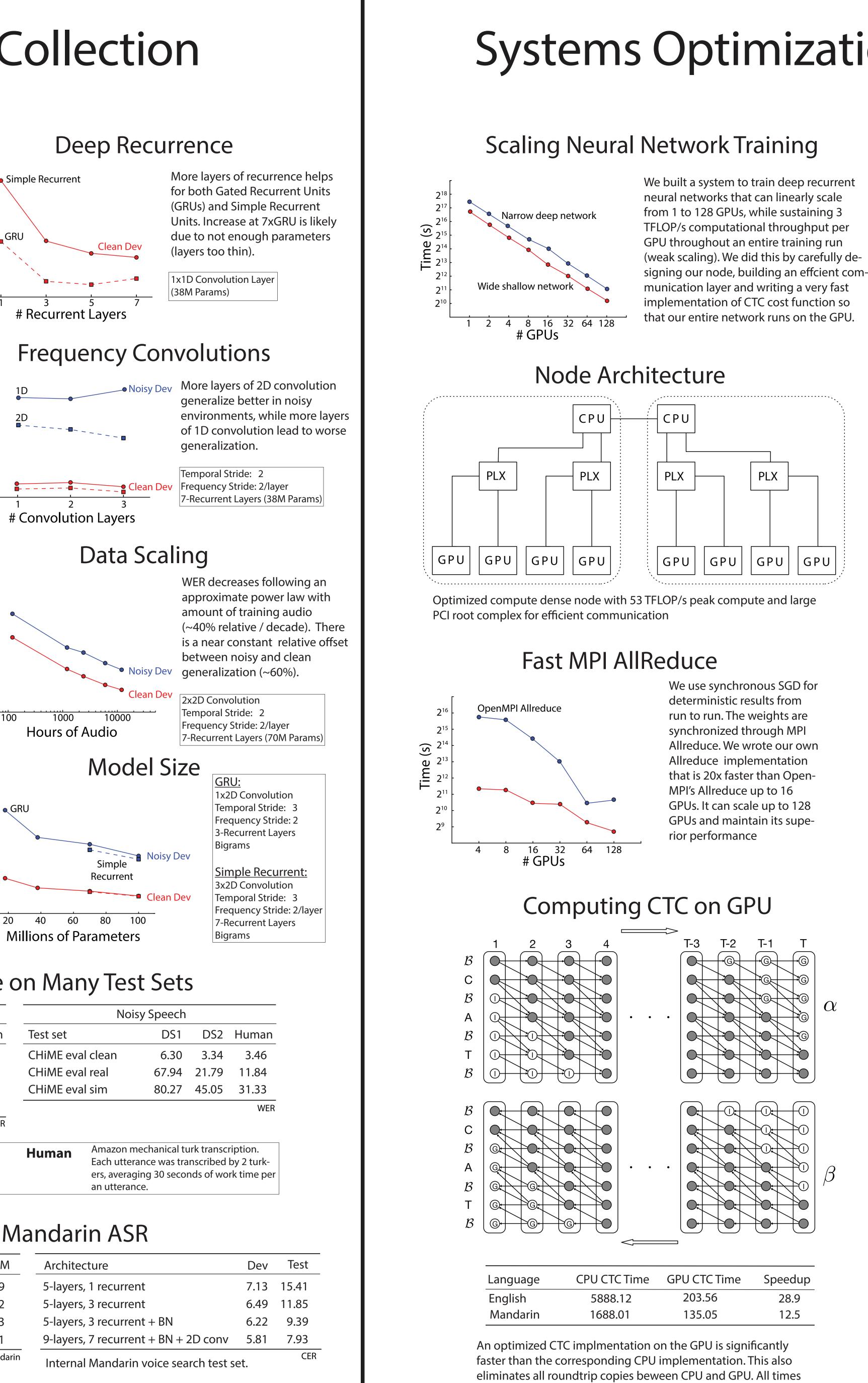
Batch Normalization

Batch normalization (between layers, not be tween timesteps) improves both training and generalization in deep recurrent networks.

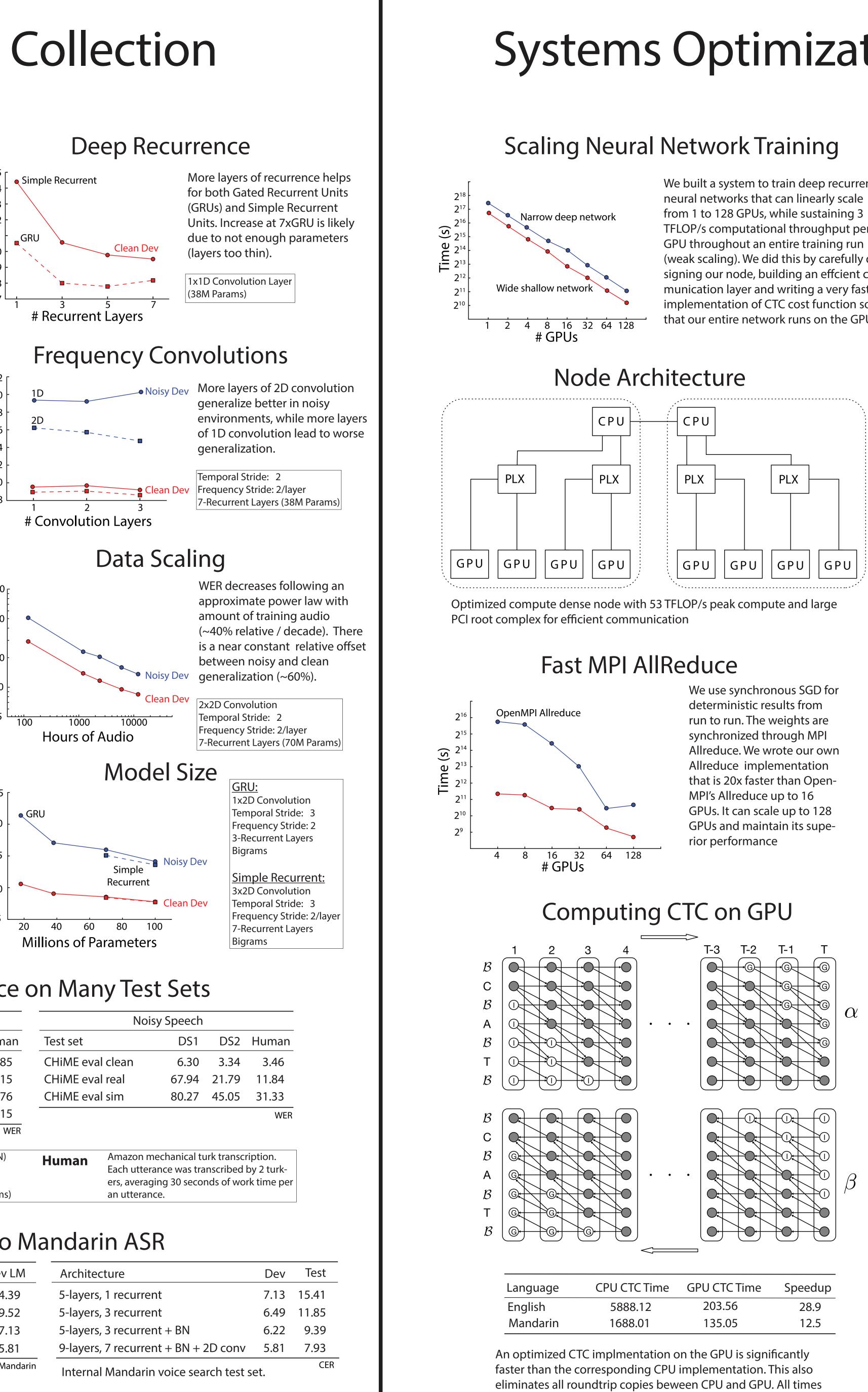
BN 1-Recurrep⁴ Laye

mm	Ma an a	NO DI	N	- / -	
~~~~~	No BN BN	har hannen han An hannen han h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-Recurrent Layers	t
1.5	2	2.5	3	_	
eratio	ns (10 ⁵ )				



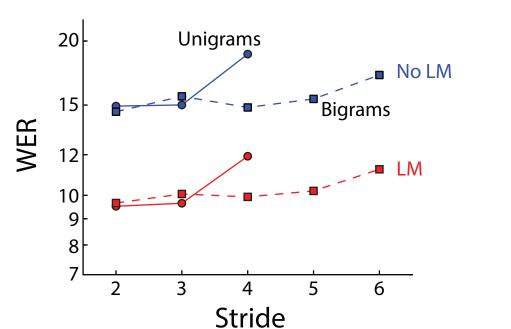


layer network.



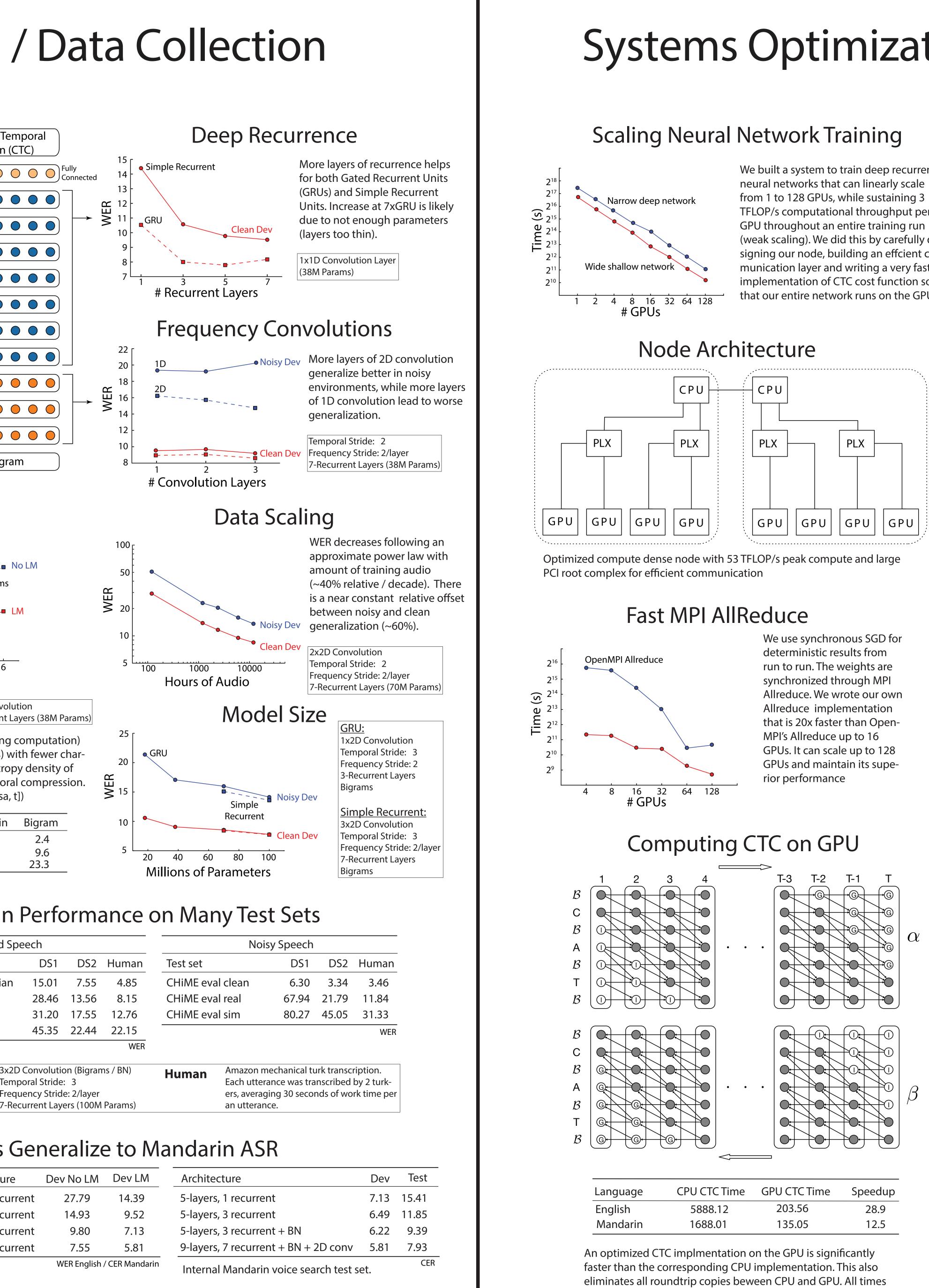
**Batch Norm** 

### Bigrams



Inspired by Mandarin, we 1x1D Convolution can maintain performance 7-Recurrent Layers (38M Params) while reducing the number of timesteps (thus dramatically reducing computation) by creating a larger alphabet (bigrams) with fewer characters / second. This decreases the entropy density of the language, allowing for more temporal compression. (ex. [the_cats_sat] -> [th, e, _, ca, ts, _, sa, t])

	Unigram	Mandarin	Bigram
Chars / Sec	14.1	3.2	2.4
Bits / Char	4.1	12.6	9.6
Bits / Sec	58.1	40.7	23.3



# Single Model Approaching Human Performance on Many Test Sets

R	lead S	speech			Accented Speech					Noi
		DS1	DS2	Human	Test set	DS1	DS2	Human	Test set	
		4.94	3.60	5.03	VoxForge American-Canadi	an 15.01	7.55	4.85	CHiME eva	al clean
		6.94	4.98	8.08	VoxForge Commonwealth	28.46	13.56	8.15	CHiME eva	al real
est-c	lean	7.89	5.33	5.83	VoxForge European	31.20	17.55	12.76	CHiME eva	al sim
est-o	ther	21.74	13.25	12.69	VoxForge Indian	45.35	22.44	22.15		
				WER				WER		
ech:		D Convol nporal Str				3x2D Convolutio Temporal Stride	•	ns / BN)	Human	Amazon n Each uttei
eech		grams / N			F	requency Strid	e: 2/layer			ers, averag
.5567	1-Recurrent Layer (38M Params)			M Params)	7	7-Recurrent Lay	ers (100M	Params)		an utterar

# Architectural Improvements Generalize to Mandarin ASR

	Туре	Hours	Language	Architecture		Dev No LM	Dev LM	Architecture
rin	spontaneous	5000	English	5-layers, 1 recurrent		27.79	14.39	5-layers, 1 recurre
	spontaneous	3000	English	9-layers	s, 7 recurrent	14.93	9.52	5-layers, 3 recurre
	mixed	1400	Mandarin	5-layers	s, 1 recurrent	9.80	7.13	5-layers, 3 recurre
		9400	Mandarin	9-layers	s, 7 recurrent	7.55	5.81	9-layers, 7 recurre
al, read, and spontaneous. ength ~3 seconds.		neous.	3x2D Convolu Temporal Stric Frequency Stri 70M Params	le: 4		WER English /	'CER Mandarin	Internal Mandarii



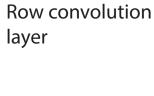
# SVAIL

# *Presenters: Jesse Engel, Shubho Sengupta

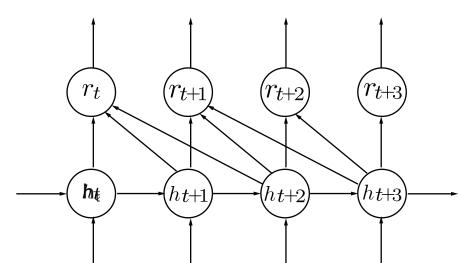
# Systems Optimizations / Deployment

are in seconds for training one epoch of a 5 layer, 3 bi-directional

### **Row Convolutions**



**Recurrent** laver

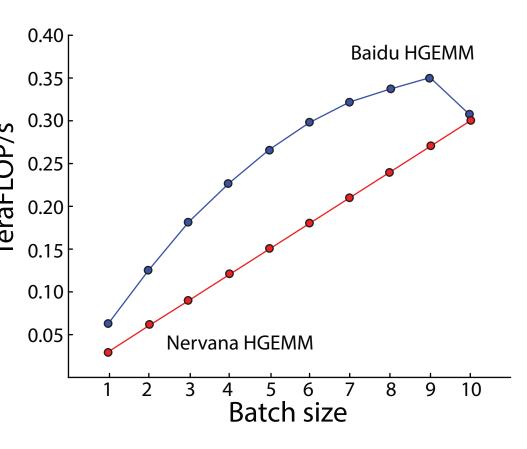


A special convolution layer that captures a forward context of fixed number of timesteps into the future. This allows us to train and deploy a model with only forward recurrent layers. Models with only forward recurrent layers satisfy the latency constraints for deployment since we do not need to wait for the end of utterance

As we see on the right,	Contract
the production system	System
that only has forward	Research
recurrent layers is very	Production
close in performance to	

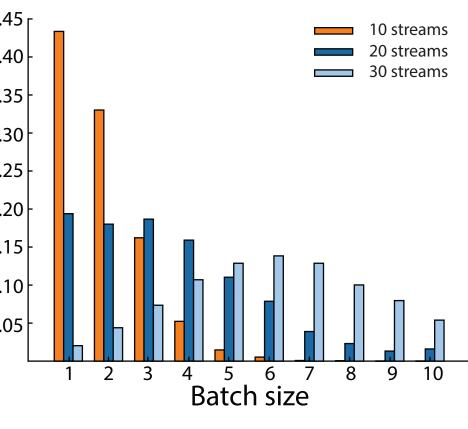
the research system with bi-directional layers, on two different test sets.

### **Deployment Optimized Matrix-Matrix** Multiply



We wrote a speical matrix-matrix multiply kernel that is efficient for half-precision and small batch sizes. The deployment system uses small batches to minimize latency and uses half-precision to minimize memory footprint. Our kernel is 2x faster than the publicly available kernels from Nervana systems

### Batch Dispatch



We built a batching scheduler that assembles streams of data from user requests into batches before doing forward propagation. Large batch size results in more computational efficiency but also higher latency. As expected, batching works best when the server is neavily loaded: as load increases, the distribution shifts to favor processing

requests in larger batches. Even for a light load of only 10 concurrent user requests, our system performs more than half the work in batches with at least 2 samples.

